Abstract

From 2003 to 2007, concentrations of total mercury and methylmercury (THg and MeHg) were continuously measured in two Canadian sub-Arctic rivers (the Nelson and the Churchill) that drain into western Hudson Bay. THg and MeHg concentrations were low in the Nelson River (mean i standard deviation, 0.88 +/- 0.33 and 0.05 +/- 0.03 ng L(-1), respectively). The Churchill River, however, had high concentrations of Hg, particularly MeHg (1.96 +/- 0.8 and 0.18 +/- 0.09 ng L(-1), respectively) and hence may be an important source of MeHg to organisms feeding in the Churchill River estuary. A large portion of THg in the Nelson River was particulate-bound (39 +/- 23%), while in the Churchill River, most was in the dissolved form (78 +/- 15%) and is likely dissolved organic carbon (DC)-bound Hg originating in the surrounding wetlands. In fact, both the Nelson and Churchill Rivers had high DOC concentrations and were therefore large exporters of DOC to Hudson Bay (1480 +/- 723 and 392 +/- 309 x 10(3) t year(-1), respectively) compared to rivers to the south and east Despite high Churchill River Hg concentrations, due to large Nelson River flows, average THg and MeHg exports to Hudson Bay from the Churchill River (37 +/- 28 and 4 +/- 4 kg year(-1), respectively) were about one-third and half the Nelson River exports (113 +/- 52 and 9 +/- 4 kg year(-1)). Interestingly, combined Hg exports to Hudson Bay from Nelson and Churchill River discharge are comparable to THg inputs from Hudson Bay springtime snowmelt (177 +/-140 kg year(-1)) but are approximately 13 times greater than MeHg snowmelt inputs (1 +/- 1 kg year(-1)). Although Hg inputs from rivers and snowmelt together may account for a large portion of the THg pool in Hudson Bay, these inputs account for a lesser portion of the MeHg pool, thus highlighting the importance of water column Hg(ll) methylation as a source of MeHg to Hudson Bay marine food webs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.