Abstract

Abstract. Total gaseous mercury (TGM) concentrations were continuously measured at Nam Co Station, a remote high-altitude site (4730 m a.s.l.), on the inland Tibetan Plateau, China, from January 2012 to October 2014 using a Tekran 2537B instrument. The mean concentration of TGM during the entire monitoring period was 1.33±0.24 ng m−3 (mean ± standard deviation), ranking it as the lowest value among all continuous TGM measurements reported in China; it was also lower than most of sites in the Northern Hemisphere. This indicated the pristine atmospheric environment on the inland Tibetan Plateau. Long-term TGM at the Nam Co Station exhibited a slight decrease especially for summer seasons. The seasonal variation of TGM was characterized by higher concentrations during warm seasons and lower concentrations during cold seasons, decreasing in the following order: summer (1.50±0.20 ng m−3) > spring (1.28±0.20 ng m−3) > autumn (1.22±0.17 ng m−3) > winter (1.14±0.18 ng m−3). Diurnal variations of TGM exhibited uniform patterns in different seasons: the daily maximum was reached in the morning (around 2–4 h after sunrise), followed by a decrease until sunset and a subsequent buildup at night, especially in the summer and the spring. Regional surface reemission and vertical mixing were two major contributors to the temporal variations of TGM while long-range transported atmospheric mercury promoted elevated TGM during warm seasons. Results of multiple linear regression (MLR) revealed that humidity and temperature were the principal covariates of TGM. Potential source contribution function (PSCF) and FLEXible PARTicle dispersion model (WRF-FLEXPART) results indicated that the likely high potential source regions of TGM to Nam Co were central and eastern areas of the Indo-Gangetic Plain (IGP) during the measurement period with high biomass burning and anthropogenic emissions. The seasonality of TGM at Nam Co was in phase with the Indian monsoon index, implying the Indian summer monsoon as an important driver for the transboundary transport of air pollution onto the inland Tibetan Plateau. Our results provided an atmospheric mercury baseline on the remote inland Tibetan Plateau and serve as new constraint for the assessment of Asian mercury emission and pollution.

Highlights

  • Mercury (Hg) is one of the most toxic environmental pollutants due to the easy uptake of its organic forms by biota and the neurological and cardiovascular damage to humans resulting from bioaccumulation (Schroeder and Munthe, 1998)

  • 1 % of the variance was associated with the annual signal, showing that the decrease in the concentrations reported in Sect. 3.1 was a small contributor to variations in Total gaseous mercury (TGM) at Nam Co

  • The mean TGM concentration was 1.33 ± 0.24 ng m−3 during the whole measurement period, with the low TGM level at Nam Co Station indicating that the environment in the inland region of the Tibetan Plateau is pristine

Read more

Summary

Introduction

Mercury (Hg) is one of the most toxic environmental pollutants due to the easy uptake of its organic forms by biota and the neurological and cardiovascular damage to humans resulting from bioaccumulation (Schroeder and Munthe, 1998). The majority of the mercury released to the environment is emitted into the atmosphere and can be transported from emission sources to deposition sites around the globe. The global residence time of GEM is in the range of 0.5–2 years due to its high volatility, low solubility and chemical stability (Schroeder and Munthe, 1998; Shia et al, 1999). It is transported globally over long distances (tens of thousands of kilometers) far from pollution sources. RGM and Hg-p are generally depicted as local and regional pollutants, and the dry and wet deposition of RGM and Hg-p are much faster than GEM (Schroeder and Munthe, 1998; Lin and Pehkonen, 1999; Lindberg and Stratton, 1998)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call