Abstract

In this paper, we introduce a multi-factor wavelet-based deep recurrent neural network (Multi-WRNN) model for more accurate pricing of the crude oil future market. This model is capable of including several key factors (e.g. stock-change and refinery capacity utilization rate) flexibly. The Multi-WRNN model enables us to classify the time series of the key factors into stationary and non-stationary. Also, the model provides a dynamical system for predicting the variation mean, volatility, and value of non-stationary key factors which have high influences on market in crisis time, and consequently, can be applied in pricing of the crude oil market. The model uses a decomposition method to efficiently predict the volatilities time series. We compare our results with empirical mode decomposition (EMD) and the discrete wavelet transforms (DWT). Then, according to locality of support property of DWTs, including B-spline reverse subdivision, we use them to decompose the original high resolution volatility time series into a lowresolution time series and several details in various resolution levels. Then all decomposed time series from the DWT multiresolution process are fed to a deep recursive neural network (DRNN) model. Moreover, we analyze and compare different DWTs, including B-splines with various degrees, and two of Daubechies wavelets. Since the locality of the operations is essential, we consider only compact supported wavelets. Also, we analyze the effect of all given key factors in the performance of our pricing model. Finally, the results of Multi-WRNN model is compared with the conventional models, such as stochastic two-factor, ARIMA, FFNN-GARCH, and GARCH which show that the Multi-WRNN model with all seven key factors as inputs of the network outperforms the other models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.