Abstract
Identification of potential landslide hazards is of great significance for disaster prevention and control. CNN (Convolutional Neural Networks), RNN (Recurrent Neural Networks) and many other deep learning methods have been used to identify landslide hazards. However, most samples are made with a fixed window size, which affects recognition accuracy to some extent. This paper presents a multi-window hidden danger identification CNN method according to the scale of the landslide in the experimental area. Firstly, the hidden danger area is preliminarily screened by InSAR deformation processing technology. Secondly, based on topography, geology, hydrology and human activities, a total of 15 disaster-prone factors are used to create factor datasets for in-depth learning. According to the general scale of the landslide, models with four window sizes of 48 × 48, 32 × 32, 16 × 16 and 8 × 8 are trained, respectively, and several window models with better recognition effect and suitable for the scale of landslide in the experimental area are selected for the accurate identification of landslide hazards. The results show that, among the four windows, 16 × 16 and 8 × 8 windows have the best model recognition effect. Then, according to the scale of the landslide, these optimal windows are pertinently selected, and the precision, recall rate and F-measure of the multi-window deep learning model are improved (82.86%, 78.75%, 80.75%). The research results prove that the multi-window identification method of landslide hazards combining InSAR technology and factors predisposing to disasters is effective, which can play an important role in regional disaster identification and enhance the scientific and technological support ability of geological disaster prevention and mitigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.