Abstract

Using the formalism of extended N=4 supersymmetric quantum mechanics we consider the procedure of the construction of multi-well potentials. We demonstrate the form-invariance of Hamiltonians entering the supermultiplet, using the presented relation for integrals, which contain fundamental solutions. The possibility of partial N=4 supersymmetry breaking is determined. We also obtain exact forms of multi-well potentials, both symmetric and asymmetric, using the Hamiltonian of harmonic oscillator as initial. The modification of the shape of potentials due to variation of parameters is also discussed, as well as application of the obtained results to the study of tunneling processes. We consider the case of exact, as well as partially broken N=4 supersymmetry. The distinctive feature of obtained probability densities and potentials is a parametric freedom, which allows to substantially modify their shape. We obtain the expressions for probability densities under the generalization of the Ornstein-Uhlenbeck process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.