Abstract

Parallel imaging is widely used in magnetic resonance imaging as an acceleration technology. Traditional linear reconstruction methods in parallel imaging often suffer from noise amplification. Recently, a non-linear robust artificial-neural-network for k-space interpolation (RAKI) exhibits superior noise resilience over other linear methods. However, RAKI performs poorly at high acceleration rates and needs a large number of autocalibration signals as the training samples. In order to tackle these issues, we propose a multi-weight method that implements multiple weighting matrices on the under-sampled data, named MW-RAKI. Enforcing multiple weighted matrices on the measurements can effectively reduce the influence of noise and increase the data constraints. Furthermore, we incorporate the strategy of multiple weighting matrixes into a residual version of RAKI, and form MW-rRAKI. Experimental comparisons with the alternative methods demonstrated noticeably better reconstruction performances, particularly at high acceleration rates. With only 12.5% of the k-space data is available, the PSNR of MW-RAKI and MW-rRAKI is improved by about 3 dB and 4 dB compared to RAKI and rRAKI, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.