Abstract

Multi-way relay networks (MWRNs) are a growing research area in the field of relay based wireless networks. Such networks provide a pathway for solving the ever increasing demand for higher data rate and spectral efficiency in a general multi-user scenario. MWRNs have potential applications in video conferencing, file sharing in a social network, as well as satellite networks and sensor networks. Recent research on MWRNs focuses on efficient transmission protocol design by harnessing different network coding schemes, higher dimensional structured codes and advanced relaying protocols. However, the existing research misses out the characterization and analysis of practical issues that influence the performance of MWRNs. Moreover, the existing transmission schemes suffer some significant limitations, that need to be solved for maximizing the benefits of MWRNs. In this thesis, we investigate the practical issues that critically influence the performance of a MWRN and propose solutions that can outperform existing schemes. To be specific, we characterize error propagation phenomenon for additive white Gaussian noise (AWGN) and fading channels with functional decode and forward (FDF) and amplify and forward (AF) relaying protocols, propose a new pairing scheme that outperforms the existing schemes for lattice coded FDF MWRNs in terms of the achievable rate and error performance and finally, analyze the impact of imperfect channel state information (CSI) and optimum power allocation on MWRNs. At first, we analyze the error performance of FDF and AF MWRNs with pairwise transmission using binary phase shift keying (BPSK) modulation in AWGN and Rayleigh fading channels. We quantify the possible error events in an L-user FDF or AF MWRN and derive accurate asymptotic bounds on the probability for the general case that a user incorrectly decodes the messages of exactly k (k ∈ [1, L− 1]) other users. We show that at high signal-to-noise ratio (SNR), the higher order error events (k ≥ 3) are vii

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.