Abstract
We provide an adaptive strategy for solving shallow water equations with dynamic grid adaptation including a sparse representation of the bottom topography. A challenge in computing approximate solutions to the shallow water equations including wetting and drying is to achieve the positivity of the water height and the well-balancing of the approximate solution. A key property of our adaptive strategy is that it guarantees that these properties are preserved during the refinement and coarsening steps in the adaptation process.The underlying idea of our adaptive strategy is to perform a multiresolution analysis using multiwavelets on a hierarchy of nested grids. This provides difference information between successive refinement levels that may become negligibly small in regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation is triggered by the remaining significant coefficients. Furthermore we use the multiresolution analysis of the underlying data as an additional indicator of whether the limiter has to be applied on a cell or not. By this the number of cells where the limiter is applied is reduced without spoiling the accuracy of the solution.By means of well-known 1D and 2D benchmark problems, we verify that multiwavelet-based grid adaptation can significantly reduce the computational cost by sparsening the computational grids, while retaining accuracy and keeping well-balancing and positivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.