Abstract

Abstract We present the results of variability power spectral density (PSD) analysis using multiwavelength radio to GeV γ-ray light curves covering timescales of decades/years to days/minutes for the blazars 3C 279 and PKS 1510−089. The PSDs are modeled as single power laws, and the best-fit spectral shape is derived using the “power spectral response” method. With more than 10 yr of data obtained with weekly/daily sampling intervals, most of the PSDs cover ∼2–4 decades in temporal frequency; moreover, in the optical band, the PSDs cover ∼6 decades for 3C 279 due to the availability of intranight light curves. Our main results are the following: (1) on timescales ranging from decades to days, the synchrotron and the inverse-Compton spectral components, in general, exhibit red-noise (slope ∼2) and flicker-noise (slope ∼1) type variability, respectively; (2) the slopes of γ-ray variability PSDs obtained using a 3 hr integration bin and 3 weeks total duration exhibit a range between ∼1.4 and ∼2.0 (mean slope = 1.60 ± 0.70), consistent within errors with the slope on longer timescales; (3) comparisons of fractional variability indicate more power on timescales ≤100 days at γ-ray frequencies compared to longer wavelengths, in general (except between the γ-ray and optical wavelengths for PKS 1510−089); (4) the normalization of intranight optical PSDs for 3C 279 appears to be a simple extrapolation from longer timescales, indicating a continuous (single) process driving the variability at optical wavelengths; and (5) the emission at optical/infrared wavelengths may involve a combination of disk and jet processes for PKS 1510−089.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.