Abstract
In principle, multiwavelength radiation thermometry allows one to correctly measure the temperature of surfaces of unknown and varying surface emissivity. Unfortunately, none of the practical realizations proposed in the past proved to be sufficiently reliable because of a strong influence of the errors arising from incorrect modeling of the emissivity and of the limited number of operating wavelengths. The use of array detectors allows a high degree of flexibility both in terms of number and spectral position of the working wavelength bands. In the case of applications at high temperatures, i.e., near 2000 \(^{\circ }\)C or above, an analysis of the theoretical measuring principles of multiwavelength thermometry, suggests the opportunity of investigating the possible advantages in extending the operating wavelengths toward the ultraviolet region. To this purpose, a simulation program was developed which allows investigation of the effect of different influencing parameters. This paper presents a brief theoretical introduction and practical analysis of the method. The best choices are derived in terms of the different influencing parameters and data relative to the simulation of both real materials and fictitious emissivity curves and have been studied and analyzed with different emissivity models to check the robustness of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.