Abstract

The paper presents analysis of the wavefront deformations of the optical waves transmitted through the ferroelectric single crystals with particular types of domain patterns by means of the numerical simulations. It is known that domain patterns influence the macroscopic properties of ferroelectric polydomain single crystals to a great extent. It is known that the domain spacing in ferroelectric single crystals can span the range from few tenths of nanometers to centimeters. Finally, it is known that measurements of the wavefront deformation can serve as input data for tomographic methods. In this paper, we perform exact numerical computations of the wavefront deformations of the optical wave passing through the ferroelectric domain patterns for different wavelengths. The considered simulations methods are based on solving the wave equation for the electromagnetic field. The computed numerical results are compared with simple analytical estimates. The key result of the paper is the benchmark of the limits for the three-dimensional observations of the ferroelectric domain patterns using digital holographic tomography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.