Abstract

Multiwavelength photo-magnetic imaging (PMI) is a novel combination of diffuse optics and magnetic resonance imaging, to the best of our knowledge, that yields tissue chromophore concentration maps with high resolution and quantitative accuracy. Here, we present the first experimental results, to the best of our knowledge, obtained using a spectrally constrained PMI image reconstruction method, where chromophore concentration maps are directly recovered, unlike the conventional two-step approach that requires an intermediate step of reconstructing wavelength-dependent absorption coefficient maps. The imposition of the prior spectral information into the PMI inverse problem improves the reconstructed image quality and allows recovery of highly quantitative concentration maps, which are crucial for effective cancer detection and characterization. The obtained results demonstrate the higher performance of the direct reconstruction method. Indeed, the reconstructed concentration maps are not only of higher quality but also obtained approximately 2 times faster than the conventional method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call