Abstract

We present the multi-wavelength observations of a flux rope that was trying to erupt from NOAA AR 11045 and the associated M-class solar flare on 12 February 2010 using space and ground based observations from TRACE, STEREO, SOHO/MDI, Hinode/XRT and BBSO. While the flux rope was rising from the active region, an M1.1/2F class flare was triggered nearby one of its footpoints. We suggest that the flare triggering was due to the reconnection of a rising flux rope with the surrounding low-lying magnetic loops. The flux rope reached a projected height of ~0.15 Rs with a speed of ~90 km/s while the soft X-ray flux enhanced gradually during its rise. The flux rope was suppressed by an overlying field and the filled plasma moved towards the negative polarity field to the west of its activation site. We find the first observational evidence of the initial suppression of a flux rope due to a remnant filament visible both at chromospheric and coronal temperatures that evolved couple of days before at the same location in the active region. SOHO/MDI magnetograms show the emergence of a bipole ~12 h prior to the flare initiation. The emerged negative polarity moved towards the flux rope activation site, and flare triggering near the photospheric polarity inversion line (PIL) took place. The motion of the negative polarity region towards PIL helped in the build-up of magnetic energy at the flare and flux rope activation site. This study provides a unique observational evidence of a rising flux rope that failed to erupt due to a remnant filament and overlying magnetic field, as well as associated triggering of an M-class flare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call