Abstract

We report the detection of variable UV absorption lines in NGC 4395, based on UV observations with the HST STIS carried out in April and July, 2004, as part of a reverberation-mapping campaign. Low-ionization lines of O I, N I, Si II, C II, and Fe II, are present in the low-state spectra (April 2004) at a velocity v_shift=-250 km/s (system A_l), and additional high-ionization lines of C IV and N V appear in the high-state spectra (July 2004) at v_shift=-250 km/s (system A_h) and at v_shift=-840 km/s (system B). The absence of absorption from the low metastable levels of Si II implies a density <~10^3 cm^(-3) for system A_l, indicating a location outside the narrow line region (NLR). System A_h is peculiar as only N V absorption is clearly detected. A high N V/C IV absorption ratio is expected for a high metallicity absorber, but this is excluded here as the metallicity of the host galaxy and of the nuclear gas is significantly subsolar. A simple acceptable model for systems A_h and B is an absorber located between the broad line region (BLR) and the NLR, which absorbs only the continuum and the BLR. At the low-state the strong narrow emission lines of C IV and N V dominate the spectrum, making the absorption invisible. At the high-state the absorbed continuum and BLR emission dominate the spectrum. Thus, the change in the observed absorption does not reflect a change in the absorber, but rather a change in the continuum and BLR emission from behind the absorber, relative to the emission from the NLR in front of the absorber. Studies of the absorption line variability in highly variable objects can thus break the degeneracy in the absorber distance determination inherent to single epoch studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call