Abstract

We propose and demonstrate a novel, to the best of our knowledge, fiber-optic multipoint acoustic detection system based on a multiwavelength erbium-doped fiber (EDF) laser (MWEDFL) using the polarization-hole-burning effect with Fabry-Perot interferometers as the acoustic cavity-loss modulator. A polarization-wavelength-related filter is designed to assign a distinct polarization state to each laser wavelength. By adjusting the polarization state, the polarization-dependent loss and gain of each laser line are tuned to be equal, effectively suppressing the mode competition of EDF and enabling a stable MWEDFL. Each laser line serves as a separate channel for acoustic detection. Theoretical and experimental analyses are conducted to study the transient-response-amplification effect on the acoustic perturbation of the MWEDFL. The results show that the proposed MWEDFL exhibits an amplification effect on the sound-induced cavity-loss modulation, effectively enhancing the sensitivity by 13 dB compared to that obtained using an external-light-source demodulation method. In addition, the MWEDFL based on the PHB effect avoids cross talk between laser channels and can achieve high sensitivity and simultaneous multichannel acoustic detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call