Abstract

We discuss the design, fabrication, and performance of experimental multiwavelength laser array transmitters that have been used in the reconfigurable optical network testbed for the Optical Network Technology Consortium (ONTC). The experimental four-node multiwavelength network testbed is SONET/ATM compatible. It has employed multiwavelength DFB laser arrays with 4 nm wavelength spacing for the first time. The testbed has demonstrated that multiwavelength DFB laser arrays are indeed practical and reproducible. For the DFB laser arrays used in such a network the precise wavelength spacing in the array and the absolute wavelength control are the most challenging tasks. We have obtained wavelength accuracy better than /spl plusmn/0.35 nm for all lasers, with some registered to better than /spl plusmn/0.2 nm. We have also studied the array yield of our devices and used wavelength redundancy to improve the array yield. Coupling efficiencies between -2.1 to -4.5 dB for each wavelength channel have been obtained. It is achieved by using specially designed lensed fiber arrays placed on a silicon V-grooved substrate to exactly match the laser spacing. The transmitter consisted of a multichip module containing a DFB laser array, an eight-channel driver array based on GaAs IC's, and associated RF circuitry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call