Abstract

We model the broad emission lines present in the optical, UV and X-ray spectra of Mrk 509, a bright type 1 Seyfert galaxy. The broad lines were simultaneously observed during a large multiwavelength campaign, using the XMM-Newton-OM for the optical lines, HST-COS for the UV lines and XMM-Newton-RGS and Epic for the X-ray lines respectively. We also used FUSE archival data for the broad lines observed in the far-ultra-violet. The goal is to find a physical connection among the lines measured at different wavelengths and determine the size and the distance from the central source of the emitting gas components. We used the "Locally optimally emission Cloud" (LOC) model which interprets the emissivity of the broad line region (BLR) as regulated by powerlaw distributions of both gas density and distances from the central source. We find that one LOC component cannot model all the lines simultaneously. In particular, we find that the X-ray and UV lines likely may originate in the more internal part of the AGN, at radii in the range ~5x10^{14}-3x10^{17} cm, while the optical lines and part of the UV lines may likely be originating further out, at radii ~3x10^{17}-3x^{18} cm. These two gas components are parametrized by a radial distribution of the luminosities with a slope gamma of ~1.15 and ~1.10, respectively, both of them covering at least 60% of the source. This simple parameterization points to a structured broad line region, with the higher ionized emission coming from closer in, while the emission of the low-ionization lines is more concentrated in the outskirts of the broad line region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call