Abstract

In this paper, we present a generalized unified method for finding multiwave solutions of the time-fractional (2+1)-dimensional Nizhnik–Novikov–Veselov equations. The fractional derivatives are described in the modified Riemann–Liouville sense. The fractional complex transform has been suggested to convert fractional-order differential equations with modified Riemann–Liouville derivatives into integer-order differential equations, and the reduced equations can be solved by symbolic computation. Multiauxiliary equations have been introduced in this method to obtain not only multisoliton solutions but also multiperiodic or multielliptic solutions. It is shown that the considered method is very effective and convenient for solving wide classes of nonlinear partial differential equations of fractional order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.