Abstract

We demonstrate optical waveguides fabricated in periodically poled MgO-doped stoichiometric lithium tantalate crystals using an fs-laser direct-write process. Two different waveguide architectures were developed: depressed cladding and stress-induced waveguides. Our strain-optic simulations confirmed the guiding mechanism for either case. We demonstrate designs optimized for low propagation loss (0.52 dB/cm) for both fundamental (1050 nm) and second-harmonic wavelengths (525 nm). Low-power CW second-harmonic-generation studies show normalized efficiencies comparable to that of annealed reverse-proton-exchange waveguides in lithium niobate. High-power studies demonstrate second-harmonic power levels up to 8.5 W in a single-pass configuration, using a 1-nm bandwidth CW IR fiber laser as a pump.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.