Abstract

AbstractThe adsorption capabilities of multiwalled carbon nanotubes (MWCNTs) with and without the embedded carboxyl group for the removal of parts per million levels of hexavalent chromium were examined as a function of several parameters, namely contact time, pH of initial solution, initial concentration of Cr(VI), adsorbent dosage as well as temperature of solution. Adsorption isotherms have been utilized to explain the adsorption mechanism. Ion exchange, intra‐particle diffusion, and electrostatic interactions are found to be the fundamental mechanisms describing the adsorption of Cr(VI). The maximum adsorption capacities of Cr(VI) ion by raw MWCNTs and functionalized MWCNTs were found to be 84.75 and 78.13 mg · g−1, respectively, as calculated by the Langmuir adsorption isotherm model. This is with regard to the electron‐rich atoms inside the functional group which repels the negatively charged dichromate ions. Kinetic studies were performed, and the data was found in good agreement with the pseudo‐second‐order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.