Abstract

Pulmonary surfactant or its components can function as barriers toward nanomaterials (NMs) entering pulmonary systems. However, since pulmonary surfactant mainly consists of lipids, it may be necessary to investigate the effects of co-exposure to NMs and pulmonary surfactant or its components on lipid metabolism and related signaling pathways. Recently we found that multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into lipid-laden foam cells via ER stress pathway. Here this study further investigated the impact of pulmonary surfactant component dipalmitoylphosphatidylcholine (DPPC) on this process. Up to 64 μg/mL hydroxylated or carboxylated MWCNTs induced lipid accumulation and IL-6 release in THP-1 macrophages, accompanying with increased oxidative stress and p-chop proteins (biomarker for ER stress). Incubation with 100 μg/mL DPPC led to MWCNT surface coating but did not significantly alter MWCNT internalization, lipid burden or IL-6 release. However, lipidomics indicated that DPPC altered lipid profliles in MWCNT-exposed cells. DPPC also led to a higher level of de novo lipogenesis regulator FASN in cells exposed to hydroxylated MWCNTs, as well as a higher level of p-chop and scavenger receptor MSR1 in cells exposed to carboxylated MWCNTs. Combined, DPPC did not significantly affect MWCNT-induced lipid accumulation but altered lipid components and ER stress in macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.