Abstract

BackgroundCarbon nanotubes (CNTs) are engineered graphene cylinders with numerous applications in engineering, electronics and medicine. However, CNTs cause inflammation and fibrosis in the rodent lung, suggesting a potential human health risk. We hypothesized that multi-walled CNTs (MWCNTs) induce two key inflammatory enzymes in macrophages, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), through activation of extracellular signal-regulated kinases (ERK1,2).MethodsRAW264.7 macrophages were exposed to MWCNTs or carbon black nanoparticles (CBNPs) over a range of doses and time course. Uptake and subcellular localization of MWCNTs was visualized by transmission electron microscopy (TEM). Protein levels of COX-2, iNOS, and ERK1,2 (total ERK and phosphorylated ERK) were measured by Western blot analysis. Prostaglandin-E2 (PGE2) and nitric oxide (NO) levels in cell supernatants were measured by ELISA and Greiss assay, respectively.ResultsMWCNTs, but not CBNPs, induced COX-2 and iNOS in a time- and dose-dependent manner. COX-2 and iNOS induction by MWCNTs correlated with increased PGE2 and NO production, respectively. MWCNTs caused ERK1,2 activation and inhibition of ERK1,2 (U0126) blocked MWCNT induction of COX-2 and PGE2 production, but did not reduce the induction of iNOS. Inhibition of iNOS (L-NAME) did not affect ERK1,2 activation, nor did L-NAME significantly decrease COX-2 induction by MWCNT. Nickel nanoparticles (NiNPs), which are present in MWCNTs as a residual catalyst, also induced COX-2 via ERK-1,2. However, a comparison of COX-2 induction by MWCNTs containing 4.5 and 1.8% Ni did not show a significant difference in ability to induce COX-2, indicating that characteristics of MWCNTs in addition to Ni content contribute to COX-2 induction.ConclusionThis study identifies COX-2 and subsequent PGE2 production, along with iNOS induction and NO production, as inflammatory mediators involved in the macrophage response to MWCNTs. Furthermore, our work demonstrates that COX-2 induction by MWCNTs in RAW264.7 macrophages is ERK1,2-dependent, while iNOS induction by MWCNTs is ERK1,2-independent. Our data also suggest contributory physicochemical factors other than residual Ni catalyst play a role in COX-2 induction to MWCNT.

Highlights

  • Carbon nanotubes (CNTs) are engineered graphene cylinders with numerous applications in engineering, electronics and medicine

  • Because the cytotoxicities of both Multiwalled carbon nanotubes (MWCNT) and Carbon black nanoparticles (CBNP) were less than 20% at concentrations from 10 to 100 μg/ml, this dose range was used in subsequent experiments

  • We found that MWCNTs increased the expression of COX-2 and inducible nitric oxide synthase (iNOS), and the induction of these two enzymes correlated with increased production of PGE2 and nitric oxide (NO), respectively

Read more

Summary

Introduction

Carbon nanotubes (CNTs) are engineered graphene cylinders with numerous applications in engineering, electronics and medicine. Carbon nanotubes (CNTs) are engineered graphene cylinders that have numerous potential applications in engineering, electronics, medicine, and tissue engineering [1,2,3,4]. Single-walled carbon nanotubes (SWCNTs) are only a few nanometers in width whereas multi-walled carbon nanotubes (MWCNTs) consist of multiple cylinders concentrically stacked along a common long axis and can be 30 to 50 nm in width. Both SWCNTs and MWCNTs can be more than 10 micrometers in length, giving CNTs a high aspect ratio similar to many toxic fibers. The cellular and molecular mechanisms by which CNTs cause these diseases remain to be elucidated

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call