Abstract

Molecular level components, like carbon multiwalled nanotubes (MWNT), show great potential for future nanoelectronics. At low frequencies, only the outermost carbon layer determines the transport properties of the MWNT. Due to the multiwalled structure and large capacitive interlayer coupling, also the inner layers contribute to the conduction at high frequencies. Consequently, the conduction properties of MWNTs are not very far from those of regular conductors with well-defined electrical characteristics. In our work we have experimentally utilized this fact in constructing various nanoelectronic components out of MWNTs, such as single electron transistors (SET), lumped resistors, and transmission lines. We present results on several nanotube samples, grown both using chemical vapor deposition as well as arc-discharge vaporization. Our results show that SET-electrometers with a noise level as low as 6·10 −6 e/ $$\sqrt {Hz} $$ (at 45 Hz) can be built using arc-discharge-grown carbon nanotubes. Moreover, short nanotubes with small contact areas are found to work at 4.2 K with good gate modulation. Reactive ion etching on CVD tubes is employed to produce nearly Ohmic components with a resistance of 200 kΩ over a 2 μm section. At high frequencies, MWNTs work over micron distances as special LC-transmission lines with high impedance, on the order of 5 kΩ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call