Abstract

In this study, a new core–shell heterostructure of multiwalled carbon nanotube@reduced graphene oxide nanoribbon (MWCNT@rGONR) was prepared by modified microwave-assisted synthesis step and a chemical reduction. The core–shell heterostructure of MWCNT@rGONR was used as the catalytic film of the counter electrode (CE) of a dye-sensitized solar cell (DSSC). The chemical state and the degree of defects on the surface of MWCNT@rGONR were investigated by X-ray photoelectron spectroscopy (XPS) and Raman spectra, respectively. Transmission electron microscopy (TEM) image of the film of MWCNT@rGONR shows graphene sheet, covering on a MWCNT, indicating a core of the carbon nanotube and its shell of graphene. Photocurrent density–voltage characteristics of the DSSCs, using commercial graphene nanopowder (GNP), MWCNT, and MWCNT@rGONR as the CE materials were obtained at 100 mW cm–2. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to study the electrocatalytic abilities of the films...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call