Abstract

Recently, a supervised dictionary learning (SDL) approach based on the Hilbert-Schmidt independence criterion (HSIC) has been proposed that learns the dictionary and the corresponding sparse coefficients in a space where the dependency between the data and the corresponding labels is maximized. In this paper, two multiview dictionary learning techniques are proposed based on this HSIC-based SDL. While one of these two techniques learns one dictionary and the corresponding coefficients in the space of fused features in all views, the other learns one dictionary in each view and subsequently fuses the sparse coefficients in the spaces of learned dictionaries. The effectiveness of the proposed multiview learning techniques in using the complementary information of single views is demonstrated in the application of speech emotion recognition (SER). The fully-continuous sub-challenge (FCSC) of the AVEC 2012 dataset is used in two different views: baseline and spectral energy distribution (SED) feature sets. Four dimensional affects, i.e., arousal, expectation, power, and valence are predicted using the proposed multiview methods as the continuous response variables. The results are compared with the single views, AVEC 2012 baseline system, and also other supervised and unsupervised multiview learning approaches in the literature. Using correlation coefficient as the performance measure in predicting the continuous dimensional affects, it is shown that the proposed approach achieves the highest performance among the rivals. The relative performance of the two proposed multiview techniques and their relationship are also discussed. Particularly, it is shown that by providing an additional constraint on the dictionary of one of these approaches, it becomes the same as the other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.