Abstract
Multiview subspace clustering (MVSC) has been used to explore the internal structure of multiview datasets by revealing unique information from different views. Most existing methods ignore the consistent information and angular information of different views. In this article, we propose a novel MVSC via low-rank symmetric affinity graph (LSGMC) to tackle these problems. Specifically, considering the consistent information, we pursue a consistent low-rank structure across views by decomposing the coefficient matrix into three factors. Then, the symmetry constraint is utilized to guarantee weight consistency for each pair of data samples. In addition, considering the angular information, we utilize the fusion mechanism to capture the inherent structure of data. Furthermore, to alleviate the effect brought by the noise and the high redundant data, the Schatten p-norm is employed to obtain a low-rank coefficient matrix. Finally, an adaptive information reduction strategy is designed to generate a high-quality similarity matrix for spectral clustering. Experimental results on 11 datasets demonstrate the superiority of LSGMC in clustering performance compared with ten state-of-the-art multiview clustering methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.