Abstract
Multiview subspace clustering is one of the most widely used methods for exploiting the internal structures of multiview data. Most previous studies have performed the task of learning multiview representations by individually constructing an affinity matrix for each view without simultaneously exploiting the intrinsic characteristics of multiview data. In this article, we propose a multiview low-rank representation (MLRR) method to comprehensively discover the correlation of multiview data for multiview subspace clustering. MLRR considers symmetric low-rank representations (LRRs) to be an approximately linear spatial transformation under the new base, that is, the multiview data themselves, to fully exploit the angular information of the principal directions of LRRs, which is adopted to construct an affinity matrix for multiview subspace clustering, under a symmetric condition. MLRR takes full advantage of LRR techniques and a diversity regularization term to exploit the diversity and consistency of multiple views, respectively, and this method simultaneously imposes a symmetry constraint on LRRs. Hence, the angular information of the principal directions of rows is consistent with that of columns in symmetric LRRs. The MLRR model can be efficiently calculated by solving a convex optimization problem. Moreover, we present an intuitive fusion strategy for symmetric LRRs from the perspective of spectral clustering to obtain a compact representation, which can be shared by multiple views and comprehensively represents the intrinsic features of multiview data. Finally, the experimental results based on benchmark datasets demonstrate the effectiveness and robustness of MLRR compared with several state-of-the-art multiview subspace clustering algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.