Abstract

Tumorigenesis arises from the dysfunction of cancer genes, leading to uncontrolled cell proliferation through various mechanisms. Establishing a complete cancer gene catalogue will make precision oncology possible. Although existing methods based on graph neural networks (GNN) are effective in identifying cancer genes, they fall short in effectively integrating data from multiple views and interpreting predictive outcomes. To address these shortcomings, an interpretable representation learning framework IMVRL-GCN is proposed to capture both shared and specific representations from multiview data, offering significant insights into the identification of cancer genes. Experimental results demonstrate that IMVRL-GCN outperforms state-of-the-art cancer gene identification methods and several baselines. Furthermore, IMVRL-GCN is employed to identify a total of 74 high-confidence novel cancer genes, and multiview data analysis highlights the pivotal roles of shared, mutation-specific, and structure-specific representations in discriminating distinctive cancer genes. Exploration of the mechanisms behind their discriminative capabilities suggests that shared representations are strongly associated with gene functions, while mutation-specific and structure-specific representations are linked to mutagenic propensity and functional synergy, respectively. Finally, our in-depth analyses of these candidates suggest potential insights for individualized treatments: afatinib could counteract many mutation-driven risks, and targeting interactions with cancer gene SRC is a reasonable strategy to mitigate interaction-induced risks for NR3C1, RXRA, HNF4A, and SP1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.