Abstract

This chapter discusses distortion analysis in parallel and radial (toe-in) type stereo image capture and display and parallel type multi-view image capture and display. The distortions in the perceived image from a stereoscopic image pair displayed on a screen are analyzed for different conditions of photographing, projecting, and viewing when using either a stereo camera or stereo projector with a parallel configuration. The conditions used for the analysis are positions and stereo bases of the viewer and the camera and magnification of the displayed image. A closed form solution of describing perceived images in the stereoscopic imaging systems with radial recording and projecting geometry for arbitrary viewer positions is presented. This solution is derived by making the heights of homologue points in both left and right images projected on the screen in the geometry to be equal. The solution has the same equation form as that of the parallel geometry, except a constant shifting term in the horizontal direction. This is a primary source of distortions in the perceived image. The condition of eliminating the term makes the solution the same as that for stereoscopic imaging systems with parallel recording and projecting geometry. And a solution for describing both the multi-view image set obtained with a parallel camera layout and the perceived image in a projection-type full parallax multi-view imaging system with a parallel projector layout, is derived by using 4 × 4 homogenous matrices to quantitatively analyze the image quality in the system. The solution provides a mean of finding properties and/or behavior of the perceived image changes depending on the viewer’s position in the system. The solution can analytically describe the appearance of three-dimensional images in the space generated by the multi-view image set displayed on a projection screen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.