Abstract

Recently, the restricted Boltzmann machine (RBM) has aroused considerable interest in the multiview learning field. Although effectiveness is observed, like many existing multiview learning models, multiview RBM ignores the local manifold structure of multiview data. In this article, we first propose a novel graph RBM model, which preserves the data manifold structure and is amenable to Gibbs sampling. Then, we develop a multiview graph RBM model on the basis of the graph RBM, which performs local structural learning and multiview representation learning simultaneously. The proposed multiview model has the following merits: 1) it preserves the data manifold structure for multiview classification and 2) it performs view-consistent representation learning and view-specific representation learning simultaneously. The experimental results show that the proposed multiview model outperforms other state-of-the-art multiview classification algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.