Abstract

Microbes play a crucial role in human health and disease. Figuring out the relationship between microbes and diseases leads to significant potential applications in disease treatments. It is an urgent need to devise robust and effective computational methods for identifying disease-related microbes. This work proposes a Multi-View Feature Aggregation (MVFA) scheme that integrates the linear and nonlinear features to identify disease-related microbes. We introduce a non-negative matrix tri-factorization (NMTF) model to extract linear features for diseases and microbes. Then we learn another type of linear feature by utilizing a bi-random walk model. The nonlinear feature is obtained by inputting the two kinds of linear features into a capsule neural network. These three types of features describe the associations between diseases and microbes from different views. Finally, considering the complementary of these features, we leverage a logistic regression model to combine the NMTF model predictions, bi-random walk model predictions, and the capsule neural network predictions to obtain the final microbe-disease pair scores. We apply our method to predict human microbe-disease associations on two datasets. Experimental results show that our multi-view model outperforms the state-of-the-art models in recovering missing microbe-disease associations and predicting associations for new microbes. The ablation study shows that aggregating multi-view linear and nonlinear features can improve the prediction performance. Case studies on two diseases, i.e. Type 1 diabetes and Liver cirrhosis, further validate our method effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.