Abstract
In this paper, we propose a new multi-view domain generalization (MVDG) approach for visual recognition, in which we aim to use the source domain samples with multiple types of features (i.e., multi-view features) to learn robust classifiers that can generalize well to any unseen target domain. Considering the recent works show the domain generalization capability can be enhanced by fusing multiple SVM classifiers, we build upon exemplar SVMs to learn a set of SVM classifiers by using one positive sample and all negative samples in the source domain each time. When the source domain samples come from multiple latent domains, we expect the weight vectors of exemplar SVM classifiers can be organized into multiple hidden clusters. To exploit such cluster structure, we organize the weight vectors learnt on each view as a weight matrix and seek the low-rank representation by reconstructing this weight matrix using itself as the dictionary. To enforce the consistency of inherent cluster structures discovered from the weight matrices learnt on different views, we introduce a new regularizer to minimize the mismatch between any two representation matrices on different views. We also develop an efficient alternating optimization algorithm and further extend our MVDG approach for domain adaptation by exploiting the manifold structure of unlabeled target domain samples. Comprehensive experiments for visual recognition clearly demonstrate the effectiveness of our approaches for domain generalization and domain adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.