Abstract

Multiview subspace clustering aims to discover the inherent structure of data by fusing multiple views of complementary information. Most existing methods first extract multiple types of handcrafted features and then learn a joint affinity matrix for clustering. The disadvantage of this approach lies in two aspects: 1) multiview relations are not embedded into feature learning and 2) the end-to-end learning manner of deep learning is not suitable for multiview clustering. Even when deep features have been extracted, it is a nontrivial problem to choose a proper backbone for clustering on different datasets. To address these issues, we propose the multiview deep subspace clustering networks (MvDSCNs), which learns a multiview self-representation matrix in an end-to-end manner. The MvDSCN consists of two subnetworks, i.e., a diversity network (Dnet) and a universality network (Unet). A latent space is built using deep convolutional autoencoders, and a self-representation matrix is learned in the latent space using a fully connected layer. Dnet learns view-specific self-representation matrices, whereas Unet learns a common self-representation matrix for all views. To exploit the complementarity of multiview representations, the Hilbert-Schmidt independence criterion (HSIC) is introduced as a diversity regularizer that captures the nonlinear, high-order interview relations. Because different views share the same label space, the self-representation matrices of each view are aligned to the common one by universality regularization. The MvDSCN also unifies multiple backbones to boost clustering performance and avoid the need for model selection. Experiments demonstrate the superiority of the MvDSCN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.