Abstract

Multiview representation learning (MVRL) leverages information from multiple views to obtain a common representation summarizing the consistency and complementarity in multiview data. Most previous matrix factorization-based MVRL methods are shallow models that neglect the complex hierarchical information. The recently proposed deep multiview factorization models cannot explicitly capture consistency and complementarity in multiview data. We present the deep multiview concept learning (DMCL) method, which hierarchically factorizes the multiview data, and tries to explicitly model consistent and complementary information and capture semantic structures at the highest abstraction level. We explore two variants of the DMCL framework, DMCL-L and DMCL-N, with respectively linear/nonlinear transformations between adjacent layers. We propose two block coordinate descent-based optimization methods for DMCL-L and DMCL-N. We verify the effectiveness of DMCL on three real-world data sets for both clustering and classification tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call