Abstract

Multi-view clustering, which aims to cluster datasets with multiple sources of information, has a wide range of applications in the communities of data mining and pattern recognition. Generally, it makes use of the complementary information embedded in multiple views to improve clustering performance. Recent methods usually find a low-dimensional embedding of multi-view data, but often ignore some useful prior information that can be utilized to better discover the latent group structure of multi-view data. To alleviate this problem, a novel pairwise sparse subspace representation model for multi-view clustering is proposed in this paper. The objective function of our model mainly includes two parts. The first part aims to harness prior information to achieve a sparse representation of each high-dimensional data point with respect to other data points in the same view. The second part aims to maximize the correlation between the representations of different views. An alternating minimization method is provided as an efficient solution for the proposed multi-view clustering algorithm. A detailed theoretical analysis is also conducted to guarantee the convergence of the proposed method. Moreover, we show that the must-link and cannot-link constraints can be naturally integrated into the proposed model to obtain a link constrained multi-view clustering model. Extensive experiments on five real world datasets demonstrate that the proposed model performs better than several state-of-the-art multi-view clustering methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call