Abstract

Multi-view clustering integrates complementary information from multiple views to gain better clustering performance rather than relying on a single view. NMF based multi-view clustering algorithms have shown their competitiveness among different multi-view clustering algorithms. However, NMF fails to preserve the locally geometrical structure of the data space. In this paper, we propose a multi-manifold regularized nonnegative matrix factorization framework (MMNMF) which can preserve the locally geometrical structure of the manifolds for multi-view clustering. MMNMF regards that the intrinsic manifold of the dataset is embedded in a convex hull of all the views' manifolds, and incorporates such an intrinsic manifold and an intrinsic (consistent) coefficient matrix with a multi-manifold regularizer to preserve the locally geometrical structure of the multi-view data space. We use linear combination to construct the intrinsic manifold, and propose two strategies to find the intrinsic coefficient matrix, which lead to two instances of the framework. Experimental results show that the proposed algorithms outperform existing NMF based algorithms for multi-view clustering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.