Abstract

Multi-view clustering algorithms based on graph learning have the ability to extract the potential association between data samples, which has been a concern of many researchers in recent years. However, existing algorithms have two limitations: (1) they directly learn from the raw graph, which includes noise and outliers, and they construct the graph filter statically, biasing the clustering results; (2) during graph construction, they mainly use the information of a single structure and fail to fully extract the multi-granular structural information among the data. To address these issues, this paper proposes a novel multi-view clustering method via dynamic unified bipartite graph learning. Specifically, a learnable graph filter is first refined to dynamically filter the original data feature space, gradually filtering out the undesirable high-frequency noise and achieving a clustering-friendly smooth representation. Second, a unified bipartite graph is constructed by combining the multi-granular structural information of different views to better explore the distinct and common information of each view. In one framework, the dynamic filter and multi-granular structure information are combined to iteratively learn the unified bipartite graph. An efficient iterative algorithm is designed to decompose the objective function into small-scale subproblems for solving. Extensive experiments on benchmark datasets show the superiority of the proposed algorithm over several existing state-of-the-art multi-view clustering algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.