Abstract

Cooperative adaptive cruise control (CACC) organizes connected and automated vehicles (CAVs) in platoons to improve traffic flow and reduce fuel consumption. Platoon formation involves a very complex process, however, because lateral and longitudinal misbehavior of CAVs results in greater fuel consumption and risk of collision. This study aims to design optimal vehicle trajectories of CAVs during CACC platoon formation. First, a basic scenario and a destination-based protocol are described to determine vehicle sequence in the platoon. A space-time lattice based model is then formulated to construct vehicle trajectories considering boundary conditions of kinematic limits, vehicle-following safety, and lane-changing rules. The objective is to optimize the vehicle sequence and fuel consumption simultaneously. A two-phase algorithm is proposed to solve this model, where the first phase is a heuristic algorithm that determines vehicle sequence and in the second phase dynamic programming is adapted to optimize fuel consumption based on the determined sequence. To evaluate the effectiveness of the proposed model in designing CAV trajectories, extensive experimental tests have been conducted in this study. Results show that the proposed model and algorithm can effectively optimize CAV sequence in the platoon based on their destinations. After optimization, CAV fuel consumption was reduced by 42%, 46%, and 43%, respectively, in three different tested scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.