Abstract

Multi-vehicle routing problem with soft time windows (MVRPSTW) is an indispensable constituent in urban logistics distribution systems. Over the past decade, numerous methods for MVRPSTW have been proposed, but most are based on heuristic rules that require a large amount of computation time. With the current rapid increase of logistics demands, traditional methods incur the dilemma between computational efficiency and solution quality. To efficiently solve the problem, we propose a novel reinforcement learning algorithm called the Multi-Agent Attention Model that can solve routing problem instantly benefit from lengthy offline training. Specifically, the vehicle routing problem is regarded as a vehicle tour generation process, and an encoder-decoder framework with attention layers is proposed to generate tours of multiple vehicles iteratively. Furthermore, a multi-agent reinforcement learning method with an unsupervised auxiliary network is developed for the model training. By evaluated on four synthetic networks with different scales, the results demonstrate that the proposed method consistently outperforms Google OR-Tools and traditional methods with little computation time. In addition, we validate the robustness of the well-trained model by varying the number of customers and the capacities of vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.