Abstract

Most cooperative motion tasks of multi vehicle systems require the agents to share relative localization information. Assuming the relative velocity of the vehicles to be known, under suitable observability conditions, relative localization among a pair of agents can be performed based on single range measurements. The problem addressed consists in designing a relative localization solution for a networked group of vehicles measuring mutual ranges: in particular, the objective is to exploit the presence of intra-vehicle communications to enhance the range-based relative position estimation. Geometrical constraints associated to the agents' (unknown) positions are explicitly accounted for in the estimation schema. The approach brings together a recent single range localization solution with a projection based Kalman filter estimation technique in the presence of state space constraints. Simulation examples are provided showing the effectiveness of the proposed solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.