Abstract

The paper discusses the sensor selection problem in estimating spatial fields. It is demonstrated that selecting a subset of sensors depends on modelling spatial processes. It is first proposed to exploit Gaussian process (GP) to model a univariate spatial field and multivariate GP (MGP) to jointly represent multivariate spatial phenomena. A Matérn cross-covariance function is employed in the MGP model to guarantee its cross-covariance matrices to be positive semi-definite. We then consider two corresponding univariate and multivariate sensor selection problems in effectively monitoring multiple spatial random fields. The sensor selection approaches were implemented in the real-world experiments and their performances were compared. Difference of results obtained by the univariate and multivariate sensor selection techniques is insignificant; that is, either of the methods can be efficiently used in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.