Abstract

In order to improve the prediction accuracy of high-dimensional data time series, a high-dimensional data multivariate time series prediction method based on deep reinforcement learning is proposed. The deep reinforcement learning method is used to solve the time delay of each variable and mine the data characteristics. According to the principle of maximum conditional entropy, the embedding dimension of the phase space is expanded, and a multivariate time series model of high-dimensional data is constructed. Thus, the conversion of reconstructed coordinates from low-dimensional to high-dimensional can be kept relatively stable. The strong independence and low redundancy of the final reconstructed phase space construct an effective model input vector for multivariate time series forecasting. Numerical experiments of classical multivariable chaotic time series show that the method proposed in this paper has better forecasting effect, which shows the forecasting effectiveness of this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.