Abstract

How to incorporate chromophores into MOFs is a key for the development of multifunctional photoactive systems. The poor internalization by cancer cells and low efficiency of ROS generation hamper the potential clinic application of Ru-based molecular agents. In this work, a nanoscale Ru-doped metal-organic framework Hf-UiO-Ru (Hf-Ru) with framework-boosted photoactivities was prepared via a multivariate strategy for use in bioimaging and ROS generation. The as-synthesized Hf-Ru nanocrystals not only maintain the well regular morphology and crystal structure in comparison with that of the Hf-UiO-66 prototype but also give an oxygen-independent emission with a much longer lifetime, higher quantum yield, and stronger ROS generation than molecular Ru(dcbpy)3. Additionally, the enhanced cellular uptake and high brightness in fluorescence and CT imaging of Hf-Ru nanocrystals have also been well studied in vitro. This multivariate strategy may be utilized as a general paradigm to develop a photoactive nanosystem for bioimaging and cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.