Abstract
The investigation and control of jet fuel contamination for private aircrafts has gained attention due to the softer monitoring in comparison to commercial aviation. The possible contamination with kerosene solvent (KS) makes this investigation more challenging, since it has physicochemical similarities with jet fuel.To help solve this problem, a chemometric methodology was applied in this researchcombining multivariate curve resolution with alternating least squares (MCR-ALS) and partial least squares (PLS) models coupled to near- and mid-infrared spectroscopies (MIR/NIR) in order to detect and quantify KS in blends with JET-A1 using 23 samples (5-60% v/v). Additionally, 98 samples were stored for 60days, and principal component analysis, genetic algorithm, and successive projections algorithm were coupled to linear discriminant analysis (PCA-LDA, GA-LDA, and SPA-LDA) in order to classify the blends according to the bands assigned to oxidation products, such as phenols and carboxylic acids. GA-LDA and SPA-LDA models were accurate and reached 100% sensitivity and specificity. Physicochemical analysis was not able to detect the presence of KS in contaminated jet fuel samples, even in high concentrations. The use of MIR-NIR combined spectra improved the quantification results, thus decreasing the experimental error from 5.22% (using only NIR) to 1.64%. PLS regression quantified the content of KS with high accuracy (RMSEP < 1.64%, R2 > 0.995). The MCR-ALS model stood out for recovering the spectral profile of kerosene solvent by segregating it from jet fuel spectra. The development of models using chemometric tools contributed to a fast, low-cost, and efficient process for quality control that can be applied in the fuel industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.