Abstract
This paper first extends some well-known univariate stochastic dominance results to multivariate stochastic dominances (MSD) for both risk averters and risk seekers, respectively, to n order for any n ≥ 1 when the attributes are assumed to be independent and the utility is assumed to be additively and separable. Under these assumptions, we develop some properties for MSD for both risk averters and risk seekers. For example, we prove that MSD are equivalent to the expected-utility maximization for both risk averters and risk seekers, espectively. We show that the hierarchical relationship exists for MSD. We establish some dual relationships between the MSD for risk averters and risk seekers. We develop some properties for non-negative combinations and convex combinations random variables of MSD and develop the theory of MSD for the preferences of both risk averters and risk seekers on diversification. At last, we discuss some MSD relationships when attributes are dependent and discuss the importance and the use of the results developed in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.