Abstract

Invariant factors of bivariate orthogonal polynomials inherit most of the properties of univariate orthogonal polynomials and play an important role in the research of Stieltjes type theorems and location of common zeros of bivariate orthogonal polynomials. The aim of this paper is to extend our study of invariant factors from two variables to several variables. We obtain a multivariate Stieltjes type theorem, and the relationships among invariant factors, multivariate orthogonal polynomials and the corresponding Jacobi matrix. We also study the location of common zeros of multivariate orthogonal polynomials and provide some examples of tri-variate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.