Abstract
In this work, a new multivariate method to monitor continuous processes is developed based on the statistics pattern analysis (SPA) framework. The SPA framework was proposed recently to address some challenges associated with batch process monitoring, such as unsynchronized batch trajectories and multimodal distribution. The major difference between the principal component analysis (PCA) based and SPA-based fault detection methods is that PCA monitors process variables while SPA monitors the statistics of process variables. In other words, PCA examines the variance−covariance of the process variables to perform fault detection while SPA examines the variance−covariance of the process variable statistics (e.g., mean, variance, autocorrelation, cross-correlation, etc.) to perform fault detection. In this paper, a window-based SPA method is proposed to address the challenges associated with continuous processes such as nonlinear process dynamics. First, the details of the window-based SPA method are presente...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.