Abstract

Recently a variety of efficient image denoising methods using wavelet transforms have been proposed by many researchers. In this paper, we derive the general estimation rule in the wavelet domain to obtain the denoised coefficients from the noisy image based on the multivariate statistical theory. The multivariate distributions of the original clean image can be estimated empirically from a sample image set. We define a parametric multivariate generalized Gaussian distribution (MGGD) model which closely fits the sample distribution. Multivariate model makes it possible to exploit the dependency between the estimated wavelet coefficients and their neighbours or other coefficients in different subbands. Also it can be shown that some of the existing methods based on statistical modeling are subsets of our multivariate approach. Our method could achieve high quality image denoising. Among the existing image denoising methods using the same type of wavelet (Daubechies 8) filter, our results produce the highest peak signal-to-noise ratio (PSNR).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.