Abstract
Segregation analysis is a method of detecting major genes for quantitative traits without using marker information. It serves as an important tool in helping investigators to plan further studies such as quantitative trait loci mapping or more sophisticated genomic analyses. However, current methods of segregation analysis for a single trait typically have low statistical power. We propose a multivariate segregation analysis (MSA) that takes advantage of the correlation structure of multiple quantitative traits to detect major genes. This method not only increases the statistical power, but allows dissection of the genetic architecture underlying the trait complex. In MSA the observed phenotypes of multiple correlated traits are fitted to a multivariate Gaussian mixture model. Model parameters are estimated under the maximum likelihood framework via the expectation-maximization algorithm. The presence of major genes is tested using likelihood ratio test statistics. Pleiotropy is distinguished from close linkage by comparing three possible models using the Bayesian information criterion. Two simulation experiments were performed based on the F(2) mating design. In the first, the statistical properties of MSA under varying heritabilities and sample sizes were investigated and the results compared with those obtained from single-trait analysis. In the second simulation the efficacy of MSA in separating pleiotropy from close linkage was demonstrated. Finally, the new method was applied to real data and detected a major gene responsible for both plant height and tiller number in rice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.