Abstract

Abstract This paper provides a multivariate regression method to estimate the sampling errors of the annual quasi-global (75°S–75°N) precipitation reconstructed by an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1979 to 2008 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data (1900–2011) are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed in detail for different EOF modes. The reconstructed time series of the global-average annual precipitation shows a 0.024 mm day−1 (100 yr)−1 trend, which is very close to the trend derived from the mean of 25 models of phase 5 of the Coupled Model Intercomparison Project. Reconstruction examples of 1983 El Niño precipitation and 1917 La Niña precipitation demonstrate that the El Niño and La Niña precipitation patterns are well reflected in the first two EOFs. Although the validation in the GPCP period shows remarkable skill at predicting oceanic precipitation from land stations, the error pattern analysis through comparison between reconstruction and GHCN suggests the critical importance of improving oceanic measurement of precipitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.